30 June 2012

Acoustic properties of glass: not so simple

At Arup, working with different specialists creates many opportunities to learn from each other. Sometimes one forgets that engineers who know everything about dark matters as climatic loads in glass or intricacies of structural silicone may not have a clue about the acoustic performance of a window.

That's why these questions keep coming to my desk (remember I'm an incurable generalist in the façades world): what effect does glass thickness have in the acoustics of a double glass unit? Or what matters more in the acoustical performance of insulated glass: the thickness in a monolithic pane, the effect of lamination or the dimension of the cavity? Here you will find some graphical answers to these questions. As usual a number of hidden surprises will come out from the data mining.

Let us start by reviewing two concepts that are paramount to measuring glass performance against noise: loudness (in particular sound pressure level, the decibels thing) and frequency (the Hertz, not related to car rental)

1/ Loudness: sound intensity, sound pressure and sound pressure level

From physics to applied acoustics in buildings. No pain, promised. Loudness is an intuitive concept: a loud noise usually has a larger pressure variation and a weak one has a smaller pressure variation. Depending on what we are looking for - the cause, the effect or the perception of noise - we use different variables and units:

  • Sound intensity refers to the cause of noise (not of our concern, only of interest for acusticians). It measures energy flow at the source, so its unit is W/m2.
  • Sound pressure refers to the effect of noise as a wave impacting any given surface, that is, noise as energy being transfered through air. Not of our concern either, more for physicists. Its unit is the Pascal or N/m2 (1Pa = 1N/m2). 
  • Sound pressure level or SPL (here comes the fun) refers to the perception of noise in humans as it can be "read" by our ears. So SPL is what matters to us, poor construction buddies. For ease of numbering SPL is measured in decibels (dB). A dB is a dimensionless unit used to express logarithmically the ratio of a value (the measured sound pressure) to a reference value (the lower threshold of hearing). Decibels are used since sound pressure level expressed in Pa would be too wide. 0 dB (the lower threshold of audition for humans) equals 0,00002 Pa; whilst 140 dB (the upper human threshold or threshold of pain) equals 200 Pa. This is a range of 140 against 10 million. But logarithms are not "natural" to understand, so some examples will be of help.
Sound intensity, sound pressure and sound pressure level are obviously related, but they measure different things and they should not be confused. The table below, taken from the very useful Sengpiel audio webpage provides some tips for getting it right, at least conceptually:

SPL variation (left column) related to sound pressure (field quantity) and sound intensity (energy quantity)

Lessons from the table above:
  • A raise in sound pressure level (SPL) of 3 dB equals an increase in sound pressure (field quantity) of 1.414 times, and (everything else being equal) it comes as a result of doubling the sound intensity (the source of sound).
  • A reduction in sound pressure level measured inside a room of 10 dB equals a reduction in sound pressure of 3.16 times, and it comes as a result of dividing the sound intensity (noise generated on the outside) by ten.
A typical opaque façade (not glass) can have a sound reduction index (a reduction of SPL) of around 40 dB. This means that if the SPL measured at the street is 70 dB, inside the façade one would perceive only 30 dB. Up to here, just arithmetic. 

Now, if the sound reduction index of the façade could be raised from 40 to 43 dB, the perceived noise coming from the street would equal that of reducing the source of noise by half. Even more, if the façade could be acoustically improved so that its sound reduction index raised from 40 to 50 dB (difficult but it can be done), the perceived noise coming from the street would equal that of reducing the source of noise (sound intensity) by ten: ten times less cars in the street, ten times less people celebrating the victory of their football team outside.

Expected sound pressure levels for different noises and their equivalent sound pressure and sound intensity. Source: Sengpiel Audio.

We got the point: sound pressure level measured in dB (sometimes indicated as dB-SPL) is critical for architectural physics - a small variation can make a lot of difference. But loudness (sound expressed as pressure variation) is not the only story. Noise - what we want to avoid inside our buildings - is the mixture of sounds of different "quality", some are bass, some are treble. Is our façade or our glass pane capable of stopping each of these "noise qualities" in the same percentage? Could an envelope act as a barrier for bass and a filter for treble? What do bass and treble have to do with noise?

2/ Frequency of sound

Sound is the quickly varying pressure wave travelling through a medium. When sound travels through air, the atmospheric pressure varies periodically (it kind of vibrates). The number of pressure variations per second is called the frequency of sound, and it is measured in Hertz (Hz) which is defined as the number of cycles per second.

Graphic representations of a sound wave. (A) Air at equilibrium, in the absence of a sound wave; (B) compressions and rarefactions that constitute a sound wave; (C) transverse representation of the wave, showing amplitude (A) and wavelength (λ). Source: Encyclopaedia Britannica.

The higher the frequency, the more high-pitched a sound is perceived. Sounds produced by drums have much lower frequencies than those produced by a whistle.

The unit of frequency is the Hertz (Hz). For a sound vibration to be audible to human beings the object must vibrate between 20 and 20,000 times per second. In other words the audible sound has a frequency of between 20 and 20,000 Hz.

High-pitched sounds (treble) have a frequency much greater than bass sounds. The treble frequency ranges between 2,000 and 4,000 Hz while the bass range from 125 to 250 Hz. 

Above: measure of loudness (wave height). The higher the louder.
Below: measure of frequency (wave length). Bass sound has long waves, treble has short waves.

Bad news: frequency and loudness are interrelated in the human ear. The range of 20 Hz to 20,000 Hz is called the audible frequency range - we know this already. But the sounds we hear are a mixture of various frequencies, and we don't perceive all of them with the same clarity. Let's see what the implication of this is.

The entire audible frequency range can be divided into 8 or 24 frequency bands known as octave bands or 1/3 octave bands respectively for analysis. An octave band is the band of frequencies in which the upper limit of the band is twice the frequency of the lower limit. Any particular sound or noise can be represented as a number of 8 (or 24) sound pressure levels in the frequency bands, as illustrated by the diagram below.
A real sound shown as a combination of different sound presure levels, one per each of the 24 frequency bands. Column width: 1/3 octave band (24 in total). Column height: SLP at each frecuency band, measured in dB.

The response of the human ear to sound is dependent on the frequency of the sound. The human ear has its peak response around 2,500 to 3,000 Hz and has a relatively low response at low frequencies. Hence, the single sound pressure level obtained by simply adding the contribution from all 1/3 octave bands together will not correlate well with the non-linear frequency response of the human ear.

This has led to the concept of weighting scales. The following diagram shows the "A-weighting" scale:

Reduction of SPL (in dB) at frequencies below and above 2000 to 3000 Hz to reflect the frequency response of the human ear.

In the "A-weighting" scale, the sound pressure levels for the lower frequency bands and high frequency bands are reduced by certain amounts before they are being combined together to give one single sound pressure level value. This value is designated as dB(A). The dB(A) is often used as it reflects more accurately the frequency response of the human ear. 

Other, less used weighting scales, are dB(B) and dB(C). The decibel C filter is practically linear over several octaves and is suitable for subjective measurements at very high sound pressure levels. The decibel B filter is between C and A. The three filters are compared below:

Noise filtering at different octaves of frequency applying decibel filter scales A, B or C.

That was enough for theory. Let us now see how all this affects the performance of glass as a real acoustic barrier.

The four hand-sketched graphs shown here below are all taken from the first edition of a great book called "Detailing for acoustics", written by Peter Lord and Duncan Templeton. There are three editions by now and I highly recommend buying one if you are an architect interested in acoustic issues applied to buildings.

3/ Glass thickness effect

The sound attenuation of any material depends on its mass, stiffness and damping characteristics. With a single glass pane the only effective way to increase its performance is to increase the thickness, because stiffness and damping cannot be changed. The sound transmission loss for a single glass pane, measured over a range of frequencies, varies depending on glass thickness.

Thicker glass tends to provide greater sound reduction even though it may actually transmit more sound at specific frequencies. Every glass pane thickness has a weak frequency value; that is, a frequency for which that glass is less 'noise absorbent' than for the others. That value is known as critical frequency. See the graphic below:

Sound reduction (in dB) measured at different frequency bands for glass panes of different thickness. Source: Detailing for Acoustics, Lord and Templeton.

A 4 mm-thick glass is rather transparent (poor attenuation measured in dB) for high frequencies at the range of 3500 Hz; 6 mm-thick glass is poor for frequencies around 2000 Hz; and 10 mm-thick glass performs bad at 1300 Hz. The higher the mass the less of a problem critical frequency appears to be: 25 mm-thick glass has no weak point as it can be noted from the graph above.

An insulating glass unit built with two panes of the same thickness experiences the issue of critical frequency: it is said that the two panes vibrate (resonate) together at that frequency, thus reducing the glass overall acoustic performance.

For this reason we recommend using different thickness in a double glass unit. A 6-12-4 mm glass will absorb more sound at high frequencies of 2000 Hz (claxon noise) than a 6-12-6 mm glass, in spite of having less mass. On the other hand, at lower frequencies between 125 and 250 Hz (traffic noise) this is not the case: a 6-12-6 mm glass reduces sound more effectively than a 6-12-4 mm glass. At low frequencies sound attenuation is directly proportional to mass.

4/ Laminated vs. monolithic glass

A laminated glass will attenuate sound transmission more than a monolithic glass of the same mass. See the graph below:

Sound absortion of monolithic (solid) glass compared to laminated glass with the same mass. Source: Detailing for Acoustics, Lord and Templeton.

A laminated glass of 2+2 mm reduces sound at high frequencies considerably more than a monolithic glass 4 mm-thick (that's 8 to 10 dB of additional attenuation). Why? because the critical frequency effect disappears due to the sound damping provided by polyvinyl butyral (the soft interlayer used to permanently bond the glass panes together dissipates energy by vibration). The same applies to the 3+3 mm laminated against the monolithic 6 mm. In contrast, at low frequencies (traffic noise) the effect of butyral is less pronounced, although it is still positive (about 2 dB increase).

5/ Air cavity effect

Surprise: a standard double glazed unit does not reduce sound transmission much more than a monolithic glass. What matters is the thickness of the air space between glass panes, but only for really wide cavities.
Effect of air space width on the acoustic performance of double glazing. Source: Detailing for Acoustics, Lord and Templeton.
The acoustic attenuation of a 6-12-6 mm glass is generally superior to that of a monolithic 6mm-thick glass, but only by 2 or 3 dB, and still there may be low frequency bands where the DGU performs worse. Of course if we compare a 6 mm-monolithic with a double glazed 12-6-10 mm, the sound reduction is much better at the double glazed unit.

What really matters is the width of the air space, not the small one found at double glazing but the one of a double skin. The ideal cavity width to boost sound attenuation is 200 mm. For widths less than (or greater than) 200 mm the effect is less noticeable (although a wide air space will always perform better than a narrow one). A double glazing with 10 mm air space performs almost like a 20 mm airspace.

6/ Combined air cavity & glass thickness effect

The conclusion comes in the last graph: a combination of large thickness, different one between the two panes and wide air space distance (even better if we use laminated glass) provides the maximum noise attenuation. We can reach up to 45dB.
Combined effect of glass thickness and air space on the acoustic performance of double glazing. Source: Detailing for Acoustics, Lord and Templeton.

To achieve this with a conventional double glazing width (about 28-35mm only) we have to employ an acoustic interlayer or a sort of resin between two panes in a laminated glass combined within a DGU. These acoustic interlayers or resins dissipate sound waves much more than two or three PVB interlayers as in a typical laminated glass. Some brands of enhanced acoustical laminated products are:
SGG Stadip Silence effect as part of a double glazed unit. Other brands perform similarly. By the way, the scale below is not frequency but loudness (it measures dB). Taken from Saint Gobain Stadip Silence brochure.

What about the effect of using argon or krypton instead of air? In theory, a higher density gas in the space between panes should have a positive effect on acoustical performance. Comparison testing of standard symmetrical insulating units indicates though that common gases as argon have virtually no increased effect on sound attenuation ratings. While some improvement was noted at some frequencies, resonance effects actually became more pronounced.

7. Some useful values

Rw index: The Rw index or sound reduction index (expressed in decibels) measures, in just one number, the acoustic performance of a specific glass unit. The higher the Rw index, the better the level of acoustic insulation offered by that glass composition. The Rw index of ordinary double glazing is around 29 dB whereas a good acoustic interlayer offers an Rw index of around 50 dB.

Rw is a single figure rating for the airborne sound insulation of building elements (not just glass). It includes a weighting for the human ear and measures actual sound transmittance. Rw is measured in a laboratory, not on site (the site-measured equivalent value has the Egyptian denomination of DnT,W). The Rw value is merely an average simplifying mutual comparison of various building components. That can be confusing some times. Two glass units can have the same Rw index while one of them performs well at low frequencies and bad at high ones, and the other one performs just the opposite.

C and Ctr factors: To slightly avoid this issue two spectrum adjustment factors: C and Ctr, have been added to modulate the Rw average. For sound waves featuring high frequencies, the factor C is added to the Rw value. For lower frequencies, factor Ctr needs to be added. The acoustic behaviour of a building component is hence defined by three numbers: Rw (C, Ctr). A building component with the values Rw (C, Ctr) = 40 (-1, -4) provides an average insulation performance of 40 dB. For higher pitched sounds the sound insulation is lessened by 1 dB (39 dB) and for lower pitched sound sources it is lessened by 4 dB (36 dB).

The table below, extracted from Saint Gobain, helps showing how these three numbers apply to different laminated units with acoustic interlayers:

Sound reduction index values for several laminated glass units with acoustic interlayers. The thickness shown at the right column is the total one. 13 mm means 6 mm + 6 mm + 0.8 mm interlayer. Taken from Saint Gobain Stadip Silence brochure.

C takes into account medium and high frequency noise sources such as TV, music, loud conversations or aircraft noise a short distance away. Ctr takes into account medium and low frequency noise sources such as urban traffic noise or aircraft noise a long distance away.

Pink Noise:  Expressed in dB(A), this is an assessment of the sound insulating properties of a building material over specified standard frequencies, which represent general activity noise when equal levels of power are applied at each frequency. So, in pink noise each octave carries an equal amount of noise power. Funnily: the name arises from the pink appearance of visible light with this power spectrum.

Ra:  Ra is the abbreviation for the sound reduction index when the spectrum adaptation term C is applied to the single number weighted sound reduction index (Rw), using pink noise as a sound source.

Ra,tr:  Ra,tr is the abbreviation for the sound reduction index when the spectrum adaptation term Ctr is applied to the single number weighted sound reduction index (Rw) using pink noise as a sound source.

So far so good. Acoustic performance of glass should now be less of a dark matter for us. But this is not all: remember that detailing to achieve a proper air tightness between glass and frame will always be required! Loose gaskets can severely harm the best glass selection for acoustics...


Anonymous said...

very informative.
Any data on double glazing with 3 and 4 mm panes?

Ignacio Fernández Solla said...

There are not many data on 3mm panes in double glazing, but yes on 4mm.

The result is rather striking: a 4mm monolithic glass has roughly the same acoustic insulation properties (Rw in dB) than a double glazed unit composed of 4mm/cavity/4mm. The values of Rw (C, Ctr) are almost the same in both cases: 30 dB (-1, -3) for monolithic 4mm and 30 dB (0, -3) for a DGU 4/12/4mm.

In summary: doubling the glass in small thickness is not worth the effort for acoustic reasons...

Anonymous said...

what about combinig in a double pane 3mm/cavity/4mm? from the data it should be effective from a sound reduction standpoint

thanks for your feedback

Louise Sutton said...

Great post, Ignacio. Having double glazed doors and windows can definitely improve a home's acoustic properties and I agree, it still depends on the glass's thickness.

Rocco van Wyk said...

Hi Ignacio. I was looking for information like this for days now and glad I found your blog. Thank you. I would like to know what the attenuation would be for 2 panes of 5 mm float glass would be with an air space of 70mm? It would be used as walls between offices.

Thank you. Rocco van Wyk South Africa

Peter Thomos said...

Greart posten! Dies wird good.thanks suchen für den Austausch it!

sudarshan shankar said...

Nice Blog. Thanks for sharing this blog. Its very useful for us. We also Manufacturers of Acoustic Wadding Acoustic Wadding Manufacturers

Sean Turck said...

Hi Ignacio, thank you for an extremely informative write up. Whilst being a laminator as well as manufacturer of SIGU's i find the subject of sound reduction extremely challenging! Your write up is in depth and extremely enlightening.

Mike Carrick said...

Great Blog, as an acoustic engineer, supporting mainly the facades industry, normally room to room flanking via the façade, I always appreciate anyone sharing knowledge, I would like to add, the CWCT state that when considering the acoustic performance of the building envelope, upto 38dB Rw is controlled by the glass units only, above this value the framing elements will have a negative effect on the overall performance, we have worked on many projects in Europe and the Middle East and assist noise consultants and façade consultants, including Arup's with potential acoustic problems associated with curtain walled building, please feel free to visit our website www.siderise.com for more details

Pam said...

Great post! This design is so incredibly cool. Thanks for sharing this here!

Stuart Spindlow said...

You have mentioned amazing acoustic properties of glass, thanks for sharing dear.

Jade Graham said...

the effect of lamination or the dimension of the cavity? Here you will find some graphical answers to these questions. www.forgetthesalesman.co.uk

Anonymous said...

Thanks for contributing your important time to post such an interesting & useful collection of knowledgeable resources, that are always of great need to everyone. Please keep continue sharing.

Working at best online mba programs

Red Wood Creations said...

Really appreciate this post. It’s hard to sort the good from the bad sometimes, but I think you’ve nailed it!

anti skid tapes supplier in india

Anonymous said...

Great post. Thanks a lot!

Jhon Marshal said...

Thanks for sharing your thoughts with us.. they are really interesting.. I would like to read more from you.
Acoustic Testing

Anonymous said...

Cám ơn bạn bài viết hay quá !
BHDstar - Rạp chiếu phim hàng đầu Việt Nam
bhd | bhd
Xem hàng nghìn bộ phim miễn phí tại : rạp chiếu phim bhdstar

Làm đẹp mỗi ngày said...

i love this post :)
Maybe you like: Sakura Vietnam chuyên điều trị nám cùng với Tiến sĩ Kim

Al Quran said...

You want to be happy and successful , please read and understand the contents of the reading
Surat Yasin
Asmaul Husna
Surat Al Mulk
Surat Ar Rahman
Thank You

Surat yasin said...

You want to be happy and successful , please read and understand the contents of the reading
Contoh Pidato
Thank You

Blogger said...

By using RentalCars you can discover the most affordable car hires at over 49000 locations worldwide.

Thủy thanh said...

Công ty chúng tôi là nhà phân phối chính thức các sản phẩm sắt thép xây dựng.
Với kinh nghiệm nhiều năm trong lĩnh vực phân phối phẩm sắt thép xây dựng, chắc chắn sẽ mang lại sự hài lòng cho Quý Khách!
Đến với công ty chúng tôi, Quý khách sẽ nhận được giá thép xây dựng cạnh tranh nhất, sản phẩm chất lượng, uy tín nhất. Để biết thêm thông tin chi tiết quý khách hàng vui lòng truy cập vào website: Thép Hòa Phát để tham khảo:

y huynh said...

máy in mã vạch Avery AP5.4
Máy in mã vạch Zebra 1170Xi4
máy in mã vạch Honeywell PD43
giấy in mã vạch Avery AP5.4
giấy in mã vạch Zebra 1170Xi4
giấy in mã vạch Honeywell PD43
mực in mã vạch Avery AP5.4
mực in mã vạch Zebra 1170Xi4
mực in mã vạch Honeywell PD43
ivory caps

lưới chống muỗi said...

Thank you for sharing the article, you can refer to some of our products sàn panel nhẹ , san panel nhe , san be tong nhe We always welcome new partners like you

Addison f said...

It's Been an awesome blog, thank you so much for sharing such a nice article, can you please add some more products about roof canopies, roof structure, tensile fabric, This is a really useful collection of knowledgeable resources. Yeah glass thickness is main important part in facade designing building so I believe in the glass importance is a major role in all this anyhow once again Great post. Love it

Luciano Ruocco said...

I really loved reading your thoughts, obviously you know what are you talking about! Your site is so easy to use too, I’ve bookmark it in my folder.
Facade Consultant

Luciano Ruocco said...

I think you should explore the articles on your website, You should also cover different different categories for articles as you writes awesome. Thanks for sharing this great article with us.
Facade Engineer

Minh Cường Lý said...

Bệnh lậu và căn bệnh giang mai là 2 chứng bệnh xã hội nguy hiểm. chủ yếu vì thế khi cảm nhận ra một số triệu chứng của 2 chứng bệnh này bạn nên đi điều trị càng kịp thời càng tốt. phac do dieu tri benh lau kết hợp với phác đồ điều trị bệnh giang mai của phòng khám Thái Hà được nhận xét cao bởi hiệu quả chữa lậu mủ giang mai cho các người bệnh.

Blogger said...

There's SHOCKING news in the sports betting world.

It has been said that any bettor needs to look at this,

Watch this now or stop placing bets on sports...

Sports Cash System - Sports Betting Robot

Blogger said...


Get professional trading signals delivered to your mobile phone every day.

Follow our signals today and gain up to 270% a day.

Windows For House said...

Thanks for sharing such a great blog... I am impressed with you taking time to post a nice info.
Windows And Doors Phoenix
Home Window Installation
Double Glazed Windows

Shobhit said...

Hello Ignacio,
Thanks for the wonderful explanation.

1) A quick question - In the "10-200-6" or "20-200-6" DGU setup, I understand that 10/20 mm is the first glass pan width, 200 mm is the air space width, and 6 mm is the second glass pan width.
As my home is at a busy traffic junction, I'm looking for reducing the traffic noise that comes through the window. Can you please let me confirm if the 10/20 mm glass should be outside (towards the street) and 6 mm glass should be inside (towards the room)? Or should it be vice versa?

2) Additionally, what material can be used for this DGU Window frame? Aluminum casing? UPVC? Iron grill? Any thoughts would be really helpful.

Thanks a lot again for the details.

Jessye Lee said...

Dabbl is a leading manufacturer and supplier for bathroom shower enclosure, shower screen, shower cubicle, shower doors, trays and many more with best quality, design and reasonable price contact us export4@dabbl.de more information visit here Shower Enclosure, Shower Doors

Anonymous said...

Hola Ignacio, Enhorabuena por tu blog. Información muy útil. Tienes artículos recientes? Muchas gracias!

افضل شركة للخدمات المنزليه بالرياض 0530242929 said...

افضل شركات نقل اثاث بالرياض شركة نقل اثاث بالرياض

افضل شركات نقل اثاث بالخرج شركة نقل اثاث بالخرج

افضل شركات تخزين اثاث بالرياض شركة تخزين اثاث بالرياض

افضل شركات نقل اثاث بخميس مشيط شركة نقل اثاث بخميس مشيط

افضل شركة نقل اثاث بجازان شركة نقل اثاث بجازان

افضل شركة نقل اثاث بابها شركة نقل اثاث بابها

افضل شركات نقل اثاث من الرياض الي خميس مشيط شركة نقل اثاث من الرياض الي خميس مشيط

افضل شركات نقل اثاث من الرياض الي الطائف شركة نقل اثاث من الرياض الي الطائف

افضل شركة للخدمات المنزليه بالرياض 0530242929 said...

افضل شركات نقل اثاث من الرياض الي خميس مشيط شركة نقل اثاث من الرياض الي خميس مشيط

افضل شركات نقل اثاث من الرياض الي الطائف شركة نقل اثاث من الرياض الي الطائف

افضل شركات نقل اثاث من الرياض الي القصيم شركة نقل اثاث من الرياض الي القصيم

افضل شركات نقل اثاث من الرياض الي الاردان شركة نقل اثاث من الرياض الي الاردان

افضل شركات نقل اثاث من الرياض الي الكويت شركة نقل اثاث من الرياض الي الكويت

افضل شركات نقل اثاث من الرياض الي عنيزة شركة نقل اثاث من الرياض الي عنيزه

افضل شركات نقل اثاث من الرياض الي الامارات شركة نقل اثاث من الرياض الي الامارات

افضل شركة للخدمات المنزليه بالرياض 0530242929 said...

افضل شركات نقل اثاث من الرياض الي ابها شركة نقل اثاث من الرياض الي ابها

افضل شركات نقل اثاث من الرياض الي مكة شركة نقل اثاث من الرياض الي مكه

افضل شركات نقل اثاث من الرياض الي جدة شركة نقل ثاث من الرياض الي جده

افضل شركات نقل اثاث من الرياض الي قطر شركة نقل ثاث من الرياض الي قطر

افضل شركات نقل اثاث من الرياض الي البحرين شركة نقل ثاث من الرياض الي البحرين

افضل شركات نقل اثاث من الرياض الي الدمام شركة نقل ثاث من الرياض الي الدمام

افضل شركات نقل اثاث خارج الرياض شركة نقل اثاث خارج الرياض

افضل شركات نقل اثاث خارج المملكة شركة نقل اثاث خارج المملكة

افضل شركة للخدمات المنزليه بالرياض 0530242929 said...

افضل شركات مكافحة حشرات بالرياض شركة مكافحة حشرات بالرياض

افضل شركات مكافحة حشرات بالخرج شركة مكافحة حشرات بالخرج

افضل شركات مكافحة حشرات بالدمام شركة مكافحة حشرات بالدمام

افضل شركات مكافحة حشرات بخميس مشيط شركة مكافحة حشرات بخميس مشيط

افضل شركات مكافحة حشرات بابها شركة مكافحة حشرات بابها

افضل شركات مكافحة الفئران بالرياض شركة مكافحة الفئران بالرياض

افضل شركات مكافحة الصراصير بالرياض شركة مكافحة الصراصير بالرياض

افضل شركة للخدمات المنزليه بالرياض 0530242929 said...

افضل شركات مكافحة البق بالرياض شركة مكافحة البق بالرياض

افضل شركات مكافحة النمل الابيض بالرياض شركة مكافحة النمل الابيض بالرياض

افضل شركات مكافحة الحمام بالرياض شركة مكافحة الحمام بالرياض

افضل شركات مكافحة الوزغ بالرياض شركة مكافحة الوزغ بالرياض

افضل شركات رش مبيدات بالرياض شركة رش مبيدات بالرياض

افضل شركات رش مبيدات بخميس مشيط شركة رش مبيدات بخميس مشيط

افضل شركات تسليك مجارى بالرياض شركة تسليك مجاري بالرياض

افضل شركات تسليك مجارى بايها شركة تسليك مجاري بابها

افضل شركات تسليك مجارى بالدمام شركة تسليك مجاري بالدمام

افضل شركة للخدمات المنزليه بالرياض 0530242929 said...

افضل شركات تنظيف بالرياض شركة تنظيف بالرياض

افضل شركات تنظيف منازل بالرياض شركة تنظيف منازل بالرياض

افضل شركات تنظيف فلل بالرياض شركة تنظيف فلل بالرياض

افضل شركات تنظيف خزانات بالرياض شركة تنظيف خزانات بالرياض

افضل شركات تنظيف مجالس بالرياض شركة تنظيف مجالس بالرياض

افضل شركات تنظيف شقق بالرياض شركة تنظيف شقق بالرياض

افضل شركات جلى بلاط بالرياض شركة جلى بلاط بالرياض

افضل شركات تنظيف كنب بالرياض شركة تنظيف كنب بالرياض

افضل شركات تنظيف موكيت بالرياض شركة تنظيف موكيت بالرياض

فريق عمل مركز الشعلة مركز الشعلة للخدمات المنزليه

افضل شركة للخدمات المنزليه بالرياض 0530242929 said...

افضل شركات تنظيف مساجد بالرياض شركة تنظيف مساجد بالرياض

شركة تنظيف بخميس مشيط شركة تنظيف بخميس مشيط

افضل شركات تنظيف مكيفات بالرياض شركة تنظيف مكيفات بالرياض

افضل شركات تنظيف منازل بالدمام شركة تنظيف منازل بالدمام

افضل شركات تنظيف مجالس بالدمام شركة تنظيف مجالس بالدمام

افضل شركات تنظيف موكيت بالدمام شركة تنظيف موكيت بالدمام

شركة مغاسل الجبر مغاسل الجبر بالرياض

افضل شركات تنظيف بالدمام شركة تنظيف بالدمام

افضل شركات تنظيف منازل بالخرج شركة تنظيف منازل بالخرج

افضل شركات تنظيف بالخرج شركة تنظيف بالخرج

افضل شركة للخدمات المنزليه بالرياض 0530242929 said...

افضل شركات تنظيف موكيت بالخرج شركة تنظيف موكيت بالخرج

فضل شركة تنظيف مجالس بخميس مشيط شركة تنظيف مجالس بخميس مشيط

فضل شركة تنظيف مسابح بالدمام شركة تنظيف مسابح بالدمام

فضل شركة تنظيف بابها شركة تنظيف بابها

فضل شركة تنظيف خزانات بخميس مشيط شركة تنظيف خزانات بخميس مشيط

فضل شركة رش مبيدات بجازان شركة رش مبيدات بجازان


شركة مكافحة حشرات بجازان شركة مكافحة حشرات بجازان

فضل شركة مكافحة النمل الابيض بالدمام شركة مكافحة النمل الابيض بالدمام

افضل شركة تنظيف مساجد بالدمام شركة تنظيف مساجد بالدمام

افضل شركة للخدمات المنزليه بالرياض 0530242929 said...

افضل شركة تنظيف كنب بالدمام شركة تنظيف كنب بالدمام

افضل شركة تنظيف بالدمام شركة تنظيف بالدمام

افضل شركة تنظيف شقق بالدمام شركة تنظيف شقق بالدمام

افضل شركة تنظيف موكيت بالدمام شركة تنظيف موكيت بالدمام

افضل شركة تنظيف مجالس بالدمام شركة تنظيف مجالس بالدمام

افضل شركة تنظيف خزانات بجازان شركة تنظيف خزانات بجازان

افضل شركة تنظيف بجازان شركة تنظيف بجازان

افضل شركة عزل اسطح بابها شركة عزل اسطح بابها

Squares UPVC said...

Thank you for your post. This is excellent information. It is amazing and wonderful to visit your site.
upvc sliding door suppliers
upvc sliding doors dealers Hyderabad

Şener Ungan said...

Some missing parts are filled now. Thank you for this helpful article.

James Watson said...

Nice Blog!!! Thanks for sharing wonderful information with us. Aluminium doors and shopfronts are the wonderful ideas if you are looking for the beautiful facades for your business. These beautiful aluminum shopfronts represent your shop's high standards.